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Functional integration approach to hysteresis

G. Bertotti,1 I. D. Mayergoyz,2 V. Basso,1 and A. Magni1
1Istituto Elettrotecnico Nazionale Galileo Ferraris, Corso Massimo d’Azeglio 42, I-10125 Torino, Italy

2Electrical and Computer Engineering Department, University of Maryland, College Park, Maryland 20742
~Received 22 February 1999!

A general formulation of scalar hysteresis is proposed. This formulation is based on two steps. First, a
generating functiong(x) is associated with an individual system, and a hysteresis evolution operator is defined
by an appropriate envelope construction applied tog(x), inspired by the overdamped dynamics of systems
evolving in multistable free-energy landscapes. Second, the average hysteresis response of an ensemble of such
systems is expressed as a functional integral over the spaceG of all admissible generating functions, under the
assumption that an appropriate measurem has been introduced inG. The consequences of the formulation are
analyzed in detail in the case where the measurem is generated by a continuous, Markovian stochastic process.
The calculation of the hysteresis properties of the ensemble is reduced to the solution of the level-crossing
problem for the stochastic process. In particular, it is shown that, when the process is translationally invariant
~homogeneous!, the ensuing hysteresis properties can be exactly described by the Preisach model of hysteresis,
and the associated Preisach distribution is expressed in closed analytic form in terms of the drift and diffusion
parameters of the Markovian process. Possible applications of the formulation are suggested, concerning the
interpretation of magnetic hysteresis due to domain wall motion in quenched-in disorder and the interpretation
of critical state models of superconducting hysteresis.@S1063-651X~99!06308-4#

PACS number~s!: 02.50.Ga, 75.60.Ej, 05.40.2a
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I. INTRODUCTION

The study of hysteresis has been a challenge to physi
and mathematicians for a long time. In physics, hystere
brings all the conceptual difficulties of out-of-equilibrium
thermodynamics@1–5#, first of all the fact that we do no
know the general principles controlling the balance betw
stored and dissipated energy in hysteretic transformat
@6,7#. In mathematics, on the other hand, the central issu
the formulation of sufficiently general mathematical descr
tions grasping the essence of hysteresis beyond the lim
interest ofad hocmodels@8–11#.

In this paper, we introduce and discuss a formulation
hysteresis of some generality, inspired by the following si
ation, often encountered in physical systems. We know
in physics, hysteresis is the consequence of the existenc
multiple metastable states in the system free energyF(X)
~the temperature dependence is tacitly understood!, and of
the fact that the system may be trapped in individual me
stable states for long times. Let us consider the simple c
where the state variableX is a scalar quantity and the re
evant free energy in the presence of the external fieldH is
G(X;H)5F(X)2HX. The metastable states available to t
system are represented byG minima with respect toX, for
which ]G/]X50, ]2G/]X2.0. When H is changed over
time, the number and the properties of these minima
modified by the variation of the term2HX. The conse-
quence is that previously stable states are made unstab
the field action and the system moves to other metast
states through a sequence of Barkhausen jumps. Becaus
condition ]G/]X50 is equivalent toH5]F/]X, one can
analyze the problem by using the field representation sh
in Fig. 1. The response of the system, expressed in term
H(X), is obtained by traversing the upper and lower en
lopes to]F/]X shown in the figure, the former and the latt
PRE 601063-651X/99/60~2!/1428~13!/$15.00
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applying to increasing and decreasingH, respectively. From
the physical viewpoint, this construction amounts to assu
ing that the system, once made unstable by the action of
external field, jumps to the nearest available energy m
mum, which means that one excludes the presence of ine
effects, which could aid the system to reach more dist
minima.

The method discussed in Sec. II translates this picture
a well-defined mathematical formulation, based on the f
lowing two steps.

~i! Given the time-dependent inputht and the continuous
function g(x), analogous to the free-energy gradient]F/]X

FIG. 1. Free energyF(X) with multiple minima and corre-
sponding gradient]F/]X. The dashed line represents the hystere
behavior of H(X) obtained from the stability conditionH
5]F/]X.
1428 © 1999 The American Physical Society
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of Fig. 1, one associates with them a certain evolut
operatorT@g#(ht), which expresses in mathematical term
the envelope construction of Fig. 1~Sec. II A!. The function
g will be called thegenerating functionof T@g#(ht). The
evolution operator acts on a given initial states0 associ-
ated with the initial inputh0 and transforms it into the fina
statest5T@g#(ht)s0 .

~ii ! Let G represent the functional space of all admissi
generating functions. Then one constructs a general hy
esis operator as the parallel connection of the collection
operatorsT@g#(ht) obtained by varyingg overG, with appro-
priate weights described by some measurem on G. Hence,
one arrives at the following formulation, in which the overa
stateSt describing the collection is expressed in terms of
functional integral,

St5E
G
T@g#~ht!s0 dm~g!, ~1!

wheres0 may depend itself ong ~Sec. II B!.
The generality of the formulation comes from the gene

nature of the spaceG as well as from general ways of a
signing a measure on this space. We will show that sev
known mathematical descriptions of hysteresis, like the P
sach model@9,12#, are particular cases of Eq.~1!, and we
will discuss some new connections that emerge from
broader perspective offered by the functional integral form
lation. A case of particular interest to physics is when Eq.~1!
is interpreted as the average hysteresis response of a st
cal ensemble of independent systems, each evolving
different free-energy landscape. The spaceG acts then as a
probability space and the measurem describes the probabil
ity that an individual system of the ensemble is characteri
by a particular generating functiongPG. In this case, there
are situations that can be analytically investigated to a c
siderable degree of detail, first of all the one where the g
erating functionsg(x) are interpreted as sample functions
a continuous Markovian stochastic process~Sec. III!. In par-
ticular, we will show that homogeneous processes give
to Preisach-type hysteresis, and we will derive explicit a
lytical expressions for the Preisach distribution as a funct
of the parameters governing the statistics of the Markov
process.

The results obtained in this paper can be important
applications to physics, where randomness due to struc
disorder often plays a key role in the appearance of hys
esis effects. The equivalence between Markovian diso
and Preisach-type hysteresis implies that the average sy
response under small fields is parabolic, a result well kno
in magnetism under the name of Rayleigh law@12#. In su-
perconducting hysteresis@13#, the same equivalence migh
be of help in the interpretation of critical state mode
@14,15# in terms of the statistics of the pinning sources act
on Abrikosov vortices, given the equivalence between t
class of models and the Preisach model@9,16,17#. Con-
versely, a limitation of our formulation is the fact that it
based on independent single-degree-of-freedom subsyst
and is thus expected to yield an incomplete description
hysteresis effects arising in systems with more complex
ternal structures@7,18,19#.
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II. MATHEMATICAL DESCRIPTION OF THE MODEL

In this section, we will discuss in more detail the vario
ingredients defining the structure of the model: input his
ries, generating functions, admissible states, input-outpu
lationships, stability properties, and finally the functional i
tegration overG.

A. Hysteresis in individual systems

Let us consider an individual system characterized b
particular functiong(x). The system is acted on by the scal
time-dependent inputht and generates the scalar outputxt in
a way dependent on the functiong(x).

(a) Input histories. We shall consider input historiesh(t),
t>0, such that, at any time,hL<h(t)<hU , wherehL andhU
are fixed given fields, delimiting the input range of intere
They will be termedlower and upper saturation field, re-
spectively. The functionh(t) will be assumed to be piece
wise monotone.

(b) Generating functions. Let us consider a given outpu
interval @xL ,xU#. The functiong(x) is an admissiblegener-
ating functionassociated with the interval@xL ,xU# if it sat-
isfies the following properties~see Fig. 2!:

~i! gis continuous in@xL ,xU#;

~ii ! g~xL!5hL ,g~xU!5hU ; ~2!

~iii ! hL,g~x!,hU for any x in the rangexL,x,xU .

(c) States. Any ordered input-output pairs5(h,x) is an
admissible state for the system. We will be mainly interes
in equilibrium states, defined as the states of the forms
5„g(x),x… with xL<x<xU . In other words, an equilibrium
state is represented by a point on the generating function.
other states will be generically termedjump states. Given the
generating functiong(x), an equilibrium state is fully de-
scribed by its outputx. In this sense, we will often identify
an equilibrium state„h5g(x),x… simply by its x value.
When the inputh is given, the possible equilibrium state
under that input are obtained by solving the equat

FIG. 2. Generating functiong(x) with illustration of the enve-
lope construction ~broken line! associated with the function
h@g#(x;x0) and its inversex@g#(h;x0).



ly

te
m

-

op

e
x

ing
e
t

te
u

f
er

by

—
the

e of
ge.

l
-

lue
ccu-

the
ng
se

the

of
y
he
e.

e
st

in-

ly
f

-
sta-

sely,

t

ur
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g(x)5h. In general, more than one solution will exist. On
the statessL5(hL ,xL) andsU5(hU ,xU) are unique by defi-
nition. They will be termedlower andupper saturation state,
respectively. We will assume that the state of the sys
before any action is made on it is always an equilibriu
state.

(d) Auxiliary functions. Given the generating function
g(x) and the equilibrium statex0 , let us introduce the func
tion h@g#(x;x0), defined as~see Fig. 2!

h@g#~x;x0!5H min
@x,x0#

g if xL<x<x0

max
@x0 ,x#

g if x0<x<xU
, ~3!

where the symbols ‘‘min’’ and ‘‘max’’ indicate the mini-
mum and the maximum ofg(x) in the specified interval.
Functionh@g# has the character of a nondecreasing envel
to g(x), more precisely, of an upper envelope forx>x0 and
a lower envelope forx<x0 . The inverse ofh@g#(x;x0) will
be denoted byx@g#(h;x0). The mathematical aspects of th
connection betweenh@g# andx@g# are discussed in Appendi
A.

(e) System evolution. Let us introduce the followingevo-
lution operator T@g#(h), defined in terms of the function
x@g#(h;x0): given the equilibrium states05(h0 ,x0), with
h05g(x0), and the input valueh, the states obtained by
applying the inputh to s0 is given by the expression

s5T @g# ~h!s05„h,x @g# ~h;x0!…. ~4!

The evolution of the system is constructed by apply
T @g#(h) many times in sequence, once for each input rev
sal, as shown in Fig. 3. More precisely, let us suppose tha
the initial time t50 the system is in the equilibrium sta
s05(h0 ,x0) and let us apply the piecewise monotone inp
history h(t). Let us denote byh1 ,h2 ,...,hn the sequence o
input values at which the input is reversed in the time int
val @0,t#, and finally letht be the current input at the timet.
Then, the statest of the system at the same time is given

FIG. 3. Action of evolution operatorsT@g#(h) associated with a
given sequence of input reversals. The initial state is lower sat
tion sL5(hL ,xL). Reversals take place ats15T@g#(h1)sL

5„h1 ,x@g#(h1 ;xL)…, s25T@g#(h2)s15„h2 ,x@g#(h2 ;x1)…, and so on.
m
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st5~ht ,xt!5T@g#~ht!T @g# ~hn!¯T @g# ~h1!s0 . ~5!

In particular, the outputxt can be expressed in the form

xt5x @g# „ht ;xn~hn ,...,h1 ;x0!…, ~6!

where xn—the output value at the last reversal point
depends in general on all past reversal inputs. Note that
evolution is rate-independent, because the statest depends
only on the current value of the input and on the sequenc
past reversal inputs, regardless of the input rate of chan

A relevant aspect of the evolution described by Eq.~5! is
that it exhibitsreturn-point memory~also called wiping-out
property! @19–21#. By this we mean that, given the initia
equilibrium states05(h0 ,x0) and the input extrema se
quence h0 ,h1 ,h2 ,h1 , with h1.h0,h0,h2,h1 , then
T@g#(h1)T@g#(h2)T@g#(h1)s05T@g#(h1)s0 ~identical conclu-
sions apply to the caseh1,h0 , h0.h2.h1). In other
words, when the input returns back to the first reversal va
h1 , the system returns back to the exact same state it o
pied when the input first reached the valueh1 , and the effect
of the intermediate input extrema is wiped out. To prove
existence of return-point memory, we begin by remarki
that return-point memory is a property of any system who
time evolution satisfies the following properties@19,12#: ~i!
the evolution is rate-independent;~ii ! there exists a~partial!
ordering relation among the states of the system;~iii ! order-
ing is preserved during the evolution of the system under
action of ordered input histories.

Property~i! is the direct consequence of the definition
the evolution operatorT@g#(h). For what concerns propert
~ii ! there exists a natural ordering relation deriving from t
fact that an equilibrium state is identified by its output valu
In fact, given the equilibrium statess15(h1 ,x1) and s2
5(h2 ,x2), we can simply state thats1<s2 if x1<x2 in the
usual sense. Finally, property~iii ! is the consequence of th
theorems of Appendix B, which show that the ordering ju
defined is preserved by Eq.~5! under the application of or-
dered input histories. Therefore, return-point memory is
deed a property of Eq.~5!.

As discussed in@@9#, p. 13#, return-point memory has the
consequence that the final statest defined by Eq.~5! is con-
trolled ~assuming, for simplicity, that the system is initial
in the lower saturation state! by the alternating sequence o
dominant extremahM1 ,hm1 ,hM2 ,hm2 ,... contained in the
full reversal sequenceh1 ,h2 ,...,hn . By this we mean that
hM1 is the global input maximum in the time interval@0,t#,
hm1 is the global input minimum in the time interval@ tM1 ,t#,
wheretM1 is the time at whichhM1 is reached, and so on.

(f) Stability properties. They can be conveniently de
scribed by introducing the concepts of strong and weak
bility. Given the equilibrium statessA5(hA ,xA) and sB
5(hB ,xB), with xA,xB , we will say thatxA andxB belong
to the same strongly stable interval if hA,hB and
T@g#(h)sA5T@g#(h)sB for any inputh. This definition gener-
ates a partition of the interval@xL ,xU# into disjoint strongly
stable subintervals, separated by unstable parts. Conver
given the equilibrium statessA5(hA ,xA) andsB5(hB ,xB),
with xA,xB and hA,hB we will say that the segmen
@xA ,xB# is weakly stableif g(xA)5hA , g(xB)5hB , and
hA,g(x),hB for anyx in the rangexA,x,xB . Notice that

a-
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the interval@xL ,xU# is always weakly stable by definition
When the equilibrium statessA5(hA ,xA) andsB5(hB ,xB)
are such thatxA,xB andhA.hB , we will call the segment
@xA ,xB# weakly unstableif g(xA)5hA , g(xB)5hB , and
hA.g(x).hB for any x in the rangexA,x,xB . A weakly
unstable interval will contain in general some strongly sta
subintervals. If it contains none, it will be termedstrongly
unstable. The various possibilities are shown in Fig. 4. O
can verify from Fig. 3 that, given any two subsequent rev
sal points (hk ,xk) and (hk11 ,xk11) associated with a certai
input history, the output interval@xk ,xk11# is always weakly
stable. In a sense, the evolution operatorT@g#(h) provides a
mechanism to select the weakly stable portions of the gi
generating function. This feature will play an important ro
in the general formulation of Sec. II B and in the particu
cases discussed in Sec. III.

Stability considerations are important, because the ev
tion of the system under varyingh is reversible inside each
strongly stable subinterval, so that its hysteresis proper
are essentially governed by the sequence of jumps occu
from one stable subinterval to another. A system initia
occupying a state inside a weakly unstable interval will ne
be able to come back to this interval if it ever leaves
Therefore, only the strongly stable subintervals that do
belong to any weakly unstable portion of@xL ,xU# control the
permanent hysteresis properties of the system. Two gen
ing functions possessing the same set of weakly unst
subintervals and differing only in their values inside the
intervals will give rise to identical hysteresis properties. Co
siderations of this kind permit one to recognize certain qu
tative aspects of hysteresis independent of the details og.
For example, Preisach-type hysteresis, briefly discusse
the next subsection, arises from generating functions c
taining two strongly stable intervals separated by a wea
unstable part@22#.

B. Hysteresis in system ensembles

Let us now consider an ensemble of systems of the t
discussed in the preceding subsection. Each system is i
tified by a particular generating functiong(x) whose domain
@xL ,xU# will be in general different from system to system
We wish to investigate the global hysteresis properties
we obtain when we subject the individual systems of

FIG. 4. Illustration of intervals with different kinds of stability
AB, weakly stable;A8B8, strongly stable;CD, weakly unstable;
C8D8, strongly unstable.
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ensemble to the common inputht and, roughly speaking, we
sum up their responses. The formalism whereby we w
carry out this sum in precise mathematical terms is the
lowing. Let us suppose that the response of each individ
system is described by some quantityq@g# , dependent on the
generating functiong. The ensemble value of that sam
quantity, sayQ ~we will use capital letters to denote en
semble properties!, will be expressed as a functional integr
of the form

Q5E
G

q@g# dm~g!. ~7!

Equation~7! is to be interpreted in the following way. Th
symbol G denotes the functional space of all generati
functions satisfying Eq.~2! for somexL andxU . In general,
xL andxU will be different for eachgPG. One introduces a
convenient set~a so-calleds algebra! of subsetsA,G and a
positive measure defined over that algebra,m(A)>0. Then
one assumes that there exist elements of the algebra g
rise to values ofq@g# inside any arbitrarily small neighbor
hood of a given valueq@g#5x, and uses the measure of the
subsets to calculate the Lebesgue integral ofq@g# over G,
represented by Eq.~7!. To make this loose description math
ematically rigorous, one should resort to the language
the methods of measure theory@23,24#. However, it is not
the purpose of this paper to go deeper into these mathem
cal aspects. In the following analysis, it will be sufficient
assume that Eq.~7! does have a precise meaning as a fu
tional integral, and that one knows how to assign the m
surem in specific cases. In Sec. III, we will discuss a pa
ticular case where one explicitly constructs the measurm
and expresses the result of the functional integration i
closed analytic form.

As a first step, let us apply Eq.~7! to the definition of
ensemble equilibrium states. The main difference with
spect to Sec. II A is that we can no longer identify an eq
librium state by its output value. In fact, given the individu
output x, the corresponding inputg(x) may not exist for
certain g functions ~if x is outside the function domain
@xL ,xU#), or may be different from function to function
which is not compatible with the assumption that the en
ensemble is driven by a common input history. In fact,
order to construct a meaningful equilibrium state, we m
~i! specify the input valueh0 ; ~ii ! determine, for each gen
erating functiongPG, the set of solutions of the equatio
g(x)5h0 ; ~iii ! for eachg, select one of these solutions, sa
j@g#(h0), according to some rule, and build the sta
s@g#(h0)5„h0 ,j@g#(h0)…; ~iv! construct the ensemble stateS0
as

S05E
G

s@g#~h0!dm~g!5S h0 ,E
G

j @g# ~h0!dm~g! D . ~8!

Equation~8! shows that a great number of possible equil
rium states are associated with a given inputh0 , as a conse-
quence of the various possible choices forj@g#(h0). Only the
lower and upper saturation states are unique, because
equationsg(x)5hL and g(x)5hU admit just one solution,
xL andxU, for eachg.
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The ensemble evolution is obtained by applying Eq.~7! to
Eqs.~4!–~6!, that is,

S5E
G
T@g#~h!s@g#~h0!dm~g!

5S h,E
G

x@g#„h;j@g#~h0!…dm~g! D , ~9!

St5~ht ,Xt!5E
G
T@g#~ht!T@g#~hn!¯T@g#~h1!s@g#~h0!dm~g!,

~10!

Xt5E
G

x@g#~ht ;xn„hn ,...,h1 ;j@g#~h0!…!dm~g!. ~11!

Because return-point memory is a property of each in
vidual system, it will also be a property of the ensemb
evolution.

The formulation summarized by Eqs.~9!–~11! is rather
general and powerful, but it is also quite abstract. It is
obvious how one could possibly determine the measurm
associated with particular cases and carry out the functio
integrals. In this connection, a situation of interest is wh
one is dealing with a statistical ensemble of independent
tems, and one wishes to calculate statistical averages ove
ensemble. In that case, Eq.~7! translates into mathematica
terms the physical idea thatQ represents the sum of all th
individual contributionsq@g# , each weighed by its probabil
ity dm(g) to occur. Accordingly,G must be endowed with
the structure of a probability space: the elementsA of thes
algebra represent the admissible events that may occu
experiments, the measurem satisfies the postulates of prob
ability, andm(A) represents the probability of the eventA.

Probability considerations permit one to express Eqs.~9!–
~11! in the following useful form. Let us consider for sim
plicity the case where the ensemble is initially in the low
saturation state. This eliminates from all equations the co
plicated dependence on the initial statej@g#(h0) of the indi-
vidual systems. In particular, Eq.~11! can be written as

Xt5E
G

x @g# „ht ;xn~hn ,...,h1 ;xL!…dm~g!. ~12!

At the end of the preceding section, we mentioned the
that the input reversal sequenceh1 ,h2 ,...,hn selects a se-
quence of weakly stable portions of the generating functi
Let us denote byp(xt ,ht ;hn ,...,h1)dxt the probability of
having a functiongPG such thatg(u)5ht for someu in the
interval @xt,xt1dxt# and such that there exists a sequence
x values, x1 ,x2 ,...,xn , for which g(x1)5h1 ,g(x2)
5h2 ,...,g(xn)5hn and @xL ,x1#,@x1 ,x2#,...,@xn21 ,xn#,
@xn ,xt# are all weakly stable subintervals. Then one can f
mally write Eq.~12! in the equivalent form

Xt5E
2`

`

xt p~xt ,ht ;hn ,...,h1!dxt . ~13!
i-
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The interest of Eq.~13! lies in the fact, discussed in Sec. II
that the probability densityp can be explicitly calculated in
the case where the measurem is generated by a continuou
Markovian stochastic process.

We conclude this section by showing, as an examp
when Eqs.~9!–~11! can contain and reproduce other know
hysteresis models. We will discuss the Preisach mo
@9,12#. To this end, let us consider the case where the inte
of Eq. ~7! is restricted to the subspaceGP,G containing the
generating functions of the type shown in Fig. 5. The dom
@xL ,xU# is equal to@21, 1# for all functions. Each function
is made up of two strongly stable, vertical branches@25#,
separated by a central, weakly unstable interval. The
branch increases fromh5hL to h5a at x5xL521, and the
right one increases fromh5b to h5hU at x5xU51. One
must assumea.b if the central part is to be weakly un
stable. Then, let us decompose the spaceGP into the equiva-
lence classesLab containing all the generating function
characterized by the samea and b, and let us express Eq
~12! as an integral over those equivalence classes, that i

Xt5E E
a.b

S E
Lab

x@g#„ht ;xn~hn ,...,h1 ;xL!…dm~g! D da db.

~14!

As discussed at the end of Sec. II A all generating functio
characterized by the same set of weakly unstable inter
and differing only in the values they take inside these int
vals give rise to identical hysteresis properties. This me
that the functionx@g# appearing in Eq.~14! takes the same
values for anygPLab , so it can be taken out of the integra
We obtain

Xt5E E
a.b

gab@ht#m~a,b!da db, ~15!

wheregab@ht# expresses in simplified operator form the d
pendence ofx@g# on a, b, and input history, whereasm(a,b)
represents the measure of the classLab . It is easy to check
through Figs. 3 and 5 thatgab@ht#561. In other words,
gab@ht# is a rectangular-loop operator with switching inpu

FIG. 5. Typical generating function associated with the Preis
model ~solid line!, and corresponding envelope constructi
~dashed line, see also Fig. 3!. The dotted lines give examples o
different weakly unstable behaviors giving rise to the same hys
esis properties.
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a andb. The hysteresis model is a weighted superposition
these operators, which means that it is precisely the Prei
model.

In the next section, we will show that the Preisach mo
can also emerge in a completely different context, when
generating functionsg(x) are interpreted as sample functio
of a Markovian stochastic process.

III. MEASURES GENERATED
BY STOCHASTIC PROCESSES

The main difficulty of the formulation discussed in th
preceding section lies in its abstract nature. One needs s
tools to generate and manipulate the measurem before one
can apply the approach to specific situations of interest
this section, we discuss the case where this issue is addre
by interpreting the generating functionsg(x) as sample func-
tions of some stochastic process. We will show that, qu
remarkably, the calculation of Eq.~13! can then be reduce
to the solution of thelevel-crossing problem~also called exit
problem or first-passage-time problem! @26,27# for the sto-
chastic process considered. This will create a direct bri
between two such distant fields as the theory of hyster
and the theory of stochastic processes, and will permit u
exploit the machinery of level-crossing analysis to der
analytical results on hysteresis. In particular, we will sh
that homogeneous continuous Markovian processes give
to Preisach-type hysteresis and we will derive explicit a
lytical expressions for the associated Preisach distribu
m(a,b).

A. Markovian processes with continuous sample functions

Let us consider the stochastic processgx . To avoid con-
fusion, we point out that the independent variablex has noth-
ing to do with the real timet: it will play the role of a
fictitious time to be eventually identified with the syste
output. We assume that the process is Markovian, that is
evolution under given initial conditions, say atx5x0 , de-
pends on these conditions only and not on the behavior of
process forx,x0 . In addition, we assume that the process
a diffusion one, which means that~almost! all its sample
functionsg(x) are continuous functions ofx. We will use the
letter h, with appropriate subscripts, to denote values ta
by these sample functions.

In Sec. II A, paragraph~f!, we discussed the fact tha
given the generating functiong(x), any arbitrary input re-
versal sequenceh1 ,h2 ,...,hn selects a sequence of weak
stable portions of that function. We will show now tha
wheng(x) is interpreted as a sample function ofgx , weakly
stable intervals are naturally and intimately related to
solution of the level-crossing problem forgx . To this pur-
pose, let us consider the interval@b,a# of the h axis and let
us select in it the pointh0 , with b,h0,a. Let us imagine
that we generate a sample functiong(x) of the process start
ing from (h0 ,x0), and that we follow it until it reaches on
of the two boundaries,h5b or h5a, for the first time@Fig.
6~a!#. The value ofx at whichg(x) reaches the boundary i
a random variable. The problem of determining the statist
properties of this random variable is known in the literatu
as the level-crossing problem or exit problem or fir
f
ch
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passage-time problem for the stochastic process@26,27#. Let
us restrict the level-crossing analysis to the sample functio
that reach the upper boundaryh5a first, and let us take the
limit h0˜b as shown in Fig. 6~b!. If we interpret the func-
tion shown in Fig. 6~b! as a portion of some generating func
tion extending outside the interval@xb ,xa#, we immediately
recognize that the interval@xb ,xa# is weakly stable@see Sec.
II A, paragraph ~f!# becauseg(xb)5b, g(xa)5a, and b
,g(x),a for any x in the rangexb,x,xa . Therefore,xa
andxb are admissible reversal outputs that may be encou
tered under input histories with input reversals ath5a and
h5b, and the solution of the particular level-crossing pro
lem shown in Fig. 6~b! is accordingly expected to give direc
information about the probability distribution of those reve
sal outputs.

To analyze in detail the consequences of this idea, let
assume that the particular level-crossing problem of Fig. 6~b!
has been solved, so that we know the conditional probabi
densityT(a,xaub,xb) of having a level-crossing event atx
5xa @that is, of havingg(xa)5a] conditioned by the fact
that g(xb)5b. The functionT is defined fora>b and is
nonanticipating, that is,T(a,xaub,xb)50 for xa,xb . It
obeys the normalization condition

E
xb

`

T~a,xaub,xb!dxa51. ~16!

The quantitiesxa andxb are in general random variables. Le
us denote bypa(xa) and pb(xb) their probability distribu-
tions. These distributions are not independent, because t
must satisfy the equation

pa~xa!5E
2`

xa
T~a,xaub,xb!pb~xb!dxb . ~17!

Notice that, because of the Markovian character of the p
cess, Eq.~17! is fully independent of the behavior of the
process outside the interval@xb ,xa#. Let us define the space
G of Sec. II B as the space containing all those sample fun
tions of the given Markovian process which satisfy the r
quirements of Eq.~2! for somexL and xU , that is, g(xL)
5hL , g(xU)5hU , andhL,g(x),hU for anyx in the range

FIG. 6. Left: example of stochastic process sample functio
involved in the study of level crossing through the boundaryh5a
~thick line! or h5b ~thin line!, starting from the initial condition
x5x0 at h5h0 . Right: same as before, in the particular case whe
h0˜b and crossing throughh5a only is considered.
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xL,x,xU . In general,xL andxU will be random variables,
taking different values for eachgPG. Then, let us study the
evolution of the ensemble described by Eq.~12!, assuming
that the ensemble is initially in the lower saturation st
@i.e., h(0)5hL]. Let us denote byh1 ,h2 ,...,hn the alternat-
ing sequence of dominant input extrema controlling the e
lution of the ensemble@this sequence was indicated
hM1 ,hm1 ,hM2 ,hm2 ,... in Sec. II A, paragraph~e!#. Let us
analyze in some detail what happens when the inputht in-
creases fromhL up to h1 along the first hysteresis branc
and then decreases fromh1 to h2 along the second one. W
denote byxt the output value associated withht for a given
generating function@see Fig. 7~a!#. The interval@xL ,xt# is
weakly stable for eachgPG, so we can apply Eq.~17!, with
b5hL , xb5xL , a5ht , xa5x@g#(ht ;xL)5xt , pb(xb)
5pL(xL), pa(xa)5p(xt ,ht):

p~xt ,ht!5E
2`

xt
T~ht ,xtuhL ,xL!pL~xL!dxL , hL<ht<h1 .

~18!

The probability distributionpL(xL) of the lower saturation
outputxL can be chosen at will; it is part of the characteriz
tion of the initial state of the ensemble. After that, Eq.~18!
permits one to calculate the unknown distributionp(xt ,ht)
on the basis of the known functionspL(xL) and
T(ht ,xtuhL ,xL). The distribution p(xt ,ht) is exactly the
function needed in Eq.~13! to calculate the average respon
of the system, according to the expression

Xt~ht!5E
2`

`

xtp~xt ,ht!dxt . ~19!

FIG. 7. Level-crossing problems to be solved to calculate h
teresis in the Markovian process. Top~field increasing fromhL

toward h1): the level crossing must be considered in the inter
@hL ,ht#, with known distributionpL(xL) at the lower h boundary
hL . Bottom ~field decreases fromh1 toward h2 , not shown!: the
level crossing must be considered in the interval@ht ,h1#, with
known distributionp1(x1 ;h1) at theupper hboundaryh1 .
e

-

-

Equation~18! can be also used to calculate the probabil
distribution p1(x1 ;h1) of the reversal outputx1 at h1 . We
find

p1~x1 ;h1!5E
2`

x1
T~h1 ,x1uhL ,xL!pL~xL!dxL ,

~20!
hL<h1<hU .

Similar considerations apply to the second, decreasing in
branch, whereht decreases fromh1 to h2 andxt accordingly
decreases fromx1 to x2 @see Fig. 7~b!#. The weakly stable
interval to consider is now@xt ,x1#. By applying Eq.~17! to
this interval, one obtains

p1~x1 ;h1!5E
2`

x1
T~h1 ,x1uht ,xt!p~xt ,ht ;h1!dxt ,

~21!
h2<ht<h1 .

The main difference with respect to Eq.~18! is that the un-
known distributionp(xt ,ht ;h1) is now inside the integral on
the right-hand side of Eq.~21!, so Eq. ~21! is actually an
integral equation forp(xt ,ht ;h1). It is this difference in the
structure of Eqs.~18! and ~21! that is responsible for the
onset of hysteresis in the average output. The compariso
Fig. 7~a! with Fig. 7~b! gives a pictorial illustration of this
difference. Although the probability distributions ofxL and
x1 are the same, the level-crossing problems to solve un
increasing or decreasing input are different, and theref
give rise to different probability distributions and differe
average outputs.

The procedure that we have described can be continue
calculate the distributionp2(x2 ;h2 ,h1) of the second rever-
sal output, given by the solution of the integral equation

p1~x1 ;h1!5E
2`

x1
T~h1 ,x1uh2 ,x2!p2~x2 ;h2 ,h1!dx2 ,

~22!
hL<h2<h1

and then the distributions p(xt ,ht ;h2 ,h1),
p3(x3 ;h3 ,h2 ,h1), and so on up to the distribution
pn(xn ;hn ,...,h1) of the last reversal output. At this poin
the probability densityp(xt ,ht ;hn ,...,h1) of the current out-
put at time t is given—depending on whether the curre
input is increasing or decreasing—by one of the followi
two equations:

p~xt ,ht ;hn ,...,h1!

5E
2`

xt
T~ht ,xtuhn ,xn!pn~xn ;hn ,...,h1!dxn ,

hn<ht<hn21 ,
~23!

pn~xn ;hn ,...,h1!

5E
2`

xn
T~hn ,xnuht ,xt!p~xt ,ht ;hn ,...,h1!dxt ,

hn21<ht<hn ,

-

l
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and the corresponding average output is

Xt~ht ;hn ,...,h1!5E
2`

`

xtp~xt ,ht ;hn ,...,h1!dxt . ~24!

By the analysis just concluded, we have reduced the orig
functional integral overG @Eq. ~12!# to a chain of integrals
and integral equations@Eqs. ~18!, ~20!, ~22!, and ~23!#, de-
pendent on the saturation distributionpL(xL) ~arbitrarily
chosen! and the transition densityT(a,xaub,xb). The central
problem is then the calculation ofT(a,xaub,xb) for a given
process.

B. Homogeneous processes

Particularly simple and interesting results are obtain
when the statistical properties of the process considered
translationally invariant with respect tox, that is, when the
process is homogeneous with respect tox. In fact, in this case
it is not necessary to determine the complete funct
T(a,xaub,xb) in order to predict the hysteresis properties
the ensemble. To clarify this point, let us come back to
first of Eqs.~23!. Because of the assumed homogeneity
the process,T(a,xaub,xb)5T(a,xa2xbub,0). Therefore,

p~x,h;hn ,...,h1!

5E
2`

x

T~h,x2xnuhn,0!pn~xn ;hn ,...,h1!dxn ,

~25!

where we have dropped for simplicity thet subscript inx and
h. According to Eq.~24!, the average system response
obtained by multiplying both members of Eq.~25! by x and
by integrating overx. By expressingx as x5(x2xn)1xn
and by rearranging the appropriate integrals on the rig
hand side, we obtain

X~h;hn ,...,h1!5Xn1XT~huhn!, h>hn , ~26!

where

XT~aub!5E
0

`

uT~a,uub,0!du, a>b ~27!

and

Xn5E
2`

`

xnpn~xn ;hn ,...,h1!dxn . ~28!

When the second of Eqs.~23! is the relevant equation, b
perfectly similar considerations one obtains

X~h;hn ,...,h1!5Xn2XT~hnuh!, h<hn . ~29!

We see that the hysteresis properties of the system are
controlled by the first moment ofT only, given by Eq.~27!.

Equation~26! shows that the shape of a generic ascend
hysteresis branch starting from the reversal fieldhn is the
same regardless of the past input history. The influence
past history is summarized in the value ofXn @Eq. ~28!#, and
the branches generated by different histories differ by a m
shift along theX axis. The same is true for descendin
al

d
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n
f
e
f

t-

lly

g

of

re

branches@Eq. ~29!#. The importance of this result lies in th
fact that it implies the validity of the so-called congruen
property@9#. It is known that return-point memory@built in
the description from the beginning, see Sec. II A, paragra
~e!# and congruency represent the necessary and suffic
conditions for the description of a given hysteretic system
the Preisach model@28,9,12#. Therefore, we conclude tha
the hysteresis generated by a homogeneous, diffusion M
kovian process is of Preisach type. The process is fully
scribed by the functionXT(aub) @Eq. ~27!#, which is nothing
but the Everett function associated with the Preisach desc
tion. The functionXT(aub) represents the average value ofx
at which the generating function crosses the levelh5a for
the first time, starting atx50 from the initial levelh5b @see
Fig. 6~b!#. The description of hysteresis is reduced to t
solution of this particular level-crossing problem for the s
chastic process.

Remarkably, this solution can be worked out in clos
analytical form. To this end, let us start from the descripti
of the process in terms of its Ito stochastic differential eq
tion @26#,

dh5A~h!dx1B~h!dWx , ~30!

where dWx represents the infinitesimal increment of th
Wiener processW(x), A andB are independent ofx because
of the assumed homogeneity of the process, andx plays the
role of time. The statistics of the process are fully describ
by the transition densityP(h,xuh0 ,x0), giving the probabil-
ity density that a sample function of the process takes
valueh at the positionx, conditioned to the fact that it take
the valueh0 at x5x0 . The Fokker-Planck equation for th
transition density associated with Eq.~30!, P(h,xuh0)
5P(h,xuh0,0), is

]

]x
P~h,xuh0!1

]

]h
@A~h!P~h,xuh0!#

2
1

2

]2

]h2 @B2~h!P~h,xuh0!#50. ~31!

As discussed before, the situation of interest is the one
picted in Fig. 6. The process starts, atx5x050, from h
5h0 . We wish to determine the statistics of thex value at
which the process reaches the levelh5a for the first time, in
the limit h0˜b. This is obtained by solving Eq.~31! under
the initial conditionP(h,0uh0)5d(h2h0), together with the
assumption of absorbing boundary conditions ath5a and
h5b, and then by taking the limith0˜b. The mathematical
details of the analysis are discussed in Appendix C. T
solution forXT(aub), expressed in terms of the function

c~u!5expF22E
0

u A~u8!

B2~u8!
du8G , ~32!

reads

XT~aub!5
2

K @b,a#
E

b

aF E
b

u

c~u8!du8G
3F E

u

a

c~u8!du8G du

B2~u!c~u!
, ~33!
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where

K @b,a#5E
b

a

c~u!du. ~34!

C. Preisach distribution associated
with a given homogeneous process

The quantityXT(aub) given by Eq.~33! coincides with
the Everett function of the Preisach model associated w
the homogeneous stochastic process. Therefore, as disc
in @9#, the Preisach distributionm(a,b) is given by

m~a,b!52
1

2

]2XT~aub!

]a]b
. ~35!

By deriving Eq.~33!, one finds

m~a,b!52
c~a!c~b!

K @b,a#
3 E

b

aF E
b

u

c~u8!du8G
3F E

u

a

c~u8!du8G du

B2~u!c~u!
, ~36!

that is, taking into account Eq.~33!,

m~a,b!5
c~a!c~b!

K @b,a#
2 XT~aub!. ~37!

Let us calculate the Preisach distribution associated w
some typical stochastic processes.

(a) Wiener process. The Wiener process is described b
A(h)50, B(h)51 @see Eq.~30!#. Therefore, we obtain from
Eqs.~32! and ~34!,

c~u!51,
~38!

K @b,a#5a2b.

By inserting these expressions into Eqs.~33!, ~36!, and~37!,
we find

m~a,b!5 1
3 ,

~39!
XT~aub!5 1

3 ~a2b!2.

The Preisach distribution is simply a constant and all hys
esis branches are parabolic~Fig. 8!.

(b) Wiener process with drift. By this, we mean the cas
where byA(h)51/(2j), B(h)51, with j.0. We have

c~u!5exp~2u/j!,
~40!

K @b,a#5exp~2b/j!2exp~2a/j!.

The Preisach distribution andXT(aub) are given by

m~a,b!5
x cothx21

sinh2 x
,

~41!

XT~aub!54~x cothx21!, x5
a2b

2j
.

th
sed

th

r-

The Preisach distribution depends on the difference (a2b)
only, and tends to the value13 when (a2b)˜0, in agreement
with Eq. ~39!. Typical hysteresis branches calculated from
Eq. ~41! are shown in Fig. 9.

(c) Ornstein-Uhlenbeck process. In this case, A(h)
52h/j, B(h)51, with j.0. We find

c~u!5exp~u2/j!,
~42!

K @b,a#5aFS 1

2
,
3

2
;
a2

j D2bFS 1

2
,
3

2
;
b2

j D ,

where F(a,c;x) is the confluent hypergeometric function.
The Preisach distribution andXT(aub) are obtained by in-
serting these expressions into Eqs.~33!, ~36!, and~37!.

IV. CONCLUSIONS

The formulation developed in the previous sections is
general enough to offer various possibilities for further stud
ies and applications. From the mathematical viewpoint, th

FIG. 8. Typical hysteresis curves for the Wiener process, calcu
lated from Eq.~39!.

FIG. 9. Typical hysteresis curves for the Wiener process with
drift, calculated from Eq.~41!.
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basic issue is the role of return-point memory in the fun
tional integration approach developed in Sec. II. We kn
that return-point memory is inherent in the formulation, a
it is natural to ask under what additional conditions, if an
an arbitrary scalar hysteretic system exhibiting return-po
memory can be described through Eqs.~10!–~13!, by choos-
ing appropriately the spaceG and the measurem. For the
moment, we do not have a general answer to this basic q
tion.

From the physical viewpoint, the results obtained in t
case where the measure is associated with a stochastic
cess are of direct interest to all those situations where s
dominant degree of freedom, sayX, evolves in a random
free-energy landscape, and the associated dynamics are
damped. By this we mean thatX obeys an equation of th
form

g
dX

dt
5H~ t !2

F~X!

]X
, ~43!

whereH(t) is the time-dependent driving field,F(X) is the
free energy of the system, andg.0 is some typical friction
constant. Under small enough field rates, the solutions of
~43!—once expressed in terms ofH as a function of
X—precisely approach the behavior shown in Fig. 1@12,29#,
so that our formulation can be directly applied, if one kno
the statistical properties of the free-energy gradient]F/]X.
A particularly important example is the motion of magne
domain walls in ferromagnets, where Eq.~43! often provides
a good physical description, and various forms of structu
disorder~point defects, dislocations, grain boundaries, e!
are responsible for the random character of]F/]X. There
are a series of classical papers in the literature@30,31#, where
the domain wall picture has been applied to the prediction
coercivity and magnetization curve shapes, starting fr
some assumption about the properties ofF(X). Equations
~33! and ~36! provide a general solution for the case whe
the process]F/]X is Markovian, continuous, and homog
neous. In particular, the proven equivalence of Markov
disorder to the Preisach model gives a sound statistical in
pretation of the latter in terms of stochastic dynamics
quenched-in disorder. In this respect, the extension of
analysis of Sec. III to non-Markovian and/or nonhomog
neous processes would be of definite interest, as a wa
provide quantitative predictions of hysteresis features un
more realistic conditions and to indicate in what directi
one should generalize the Preisach model in order to impr
the macroscopic description of hysteresis generated by v
ous forms of structural disorder.

APPENDIX A: PROPERTIES OF h
†g‡„x;x0… AND x

†g‡„h;x0…

The functionh@g#(x;x0) defined by Eq.~3! is continuous
and nondecreasing with respect tox and it is continuous with
respect tox0 . Its main properties derive from the followin
theorem.

Theorem 1. Given anyhP@hL ,hU#, there exists at leas
one equilibrium statexP@xL ,xU#, such thath@g#(x;x0)5h.

Proof. The theorem holds by definition forh5g(x0), h
5hL , andh5hU . Then, let us consider the caseg(x0),h
,hU . Let us introduce the set
-
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U @g#~h,x0!5$xP@x0 ,xU#:g~x!5h%. ~A1!

Because of the continuity ofg, U @g# is closed and will there-
fore contain its minimumxm . This is the smallestx
P@x0 ,xU# for which g(x)5h. Becauseg(x0),h, then
g(x),h for any xP@x0 ,xm), i.e., max$g(u):uP@x0,xm#%
5g(xm)5h. Therefore, the equilibrium statexm is such that
h@g#(xm ;x0)5h. The proof of the casehL,h,g(x0) is
analogous. The only difference is that one must consider
maximumxM of the set

L @g#~h,x0!5$xP@xL ,x0#:g~x!5h%. ~A2!

Following the results of theorem 1, let us introduce the fun
tion x@g#(h;x0) defined as follows:

x@g#~h;x0!5 HmaxL @g#~h,x0!

minU @g#~h,x0!

if hL<h<g~x0!

if g~x0!<h<hU
.

~A3!

The functionx@g#(h;x0) is the inverse ofh@g#(x;x0). In fact,
according to theorem 1,h@g#„x@g#(h;x0);x0…5h ~see Fig. 2!.
It monotonically increases withh and, as a rule, it is no
continuous inh. However, it is continuous inx0 , because
both maxL@g# and minU@g# are continuous inx0 , as a conse-
quence of the continuity ofg. Notice that the graph ofx@g#

consists uniquely of equilibrium states, that is, of points
the generating functiong(x).

APPENDIX B: ORDERING PROPERTIES OF T
†g‡„h…

As discussed in Sec. II A, given the equilibrium stat
s15(h1 ,x1) ands25(h2 ,x2) we say thats1<s2 if x1<x2 in
the usual sense. The set of equilibrium states is totally
dered with respect to this relation. Before considering
theorems deriving from the existence of this ordering re
tion, let us prove the following four lemmas, involving th
setsU @g# andL @g# defined by Eqs.~A1! and ~A2!.

Lemma 1. Given xA<xB and hL<h<min$g(xA),g(xB)%,
then maxL @g#(h,xA)<maxL@g#(h,xB). In fact, L @g#(h,xB)
5L @g#(h,xA)øLAB , where LAB5$xP(xA ,xB] :g(x)5h%.
LAB is empty or contains elements that are all greater t
any element ofL @g#(h,xA). In both cases, the lemma i
proven.

Lemma 2. Given xA<xB and hU>h>max$g(xA),g(xB)%,
then minU@g#(h,xA)<minU@g#(h,xB). In fact, U @g#(h,xA)
5U @g#(h,xB)øUAB , where UAB5$xP@xA ,xB):g(x)5h%.
UAB is empty or contains elements that are all smaller th
any element ofU @g#(h,xB). In both cases, the lemma i
proven.

Lemma 3. Given xA<xB and g(xA)>h>g(xB), then
maxL@g#(h,xA)<minU@g#(h,xB). In fact, given any x
PL @g#(h,xA) andx8PU @g#(h,xB), x<xA<xB<x8. This will
hold in particular for x5maxL@g#(h,xA) and x8
5minU@g#(h,xB), which proves the lemma.

Lemma 4. Given xA<xB and g(xA)<h<g(xB), then
minU@g#(h,xA)<maxL@g#(h,xB). In fact, the set ZAB5$x
P@xA ,xB#:g(x)5h% is not empty, which means tha
minU@g#(h,xA)5minZAB and maxL@g#(h,xB)5maxZAB. Be-
cause minZAB<maxZAB, the lemma is proven.

Theorem 2. Given the equilibrium statessA and sB , sA
<sB , thenT@g#(h)sA<T@g#(h)sB for any hP@hL ,hU#.
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Proof. Let us express the states assA5„hA5g(xA),xA…

and sB5„hB5g(xB),xB…, with xA<xB . According to Eq.
~4!, the application ofT@g#(h) changesxA and xB into
x@g#(h;xA) andx@g#(h;xB). By applying lemmas 1–4 to the
definition of x@g#(h;x0) @Eq. ~A3!#, one finds that
x @g#(h;xA)<x@g#(h;xB) for any hP@hL ,hU#.

Theorem 3. Given the equilibrium statessA and sB , sA
<sB , and the inputshA and hB , hA<hB , thenT@g#(hA)sA
<T@g#(hB)sB .

Proof. Let us express the states assA5„hA5g(xA),xA…

andsB5„hB5g(xB),xB…, with xA<xB . From theorem 2, we
have thatx@g#(hA ;xA)<x@g#(hA ;xB). On the other hand
x@g#(hA ;xB)<x@g#(hB ;xB), because of the monotonicity o
x@g#(h;x0) with respect to h. Therefore, x@g#(hA ;xA)
<x@g#(hB ;xB).

Theorem 4. Let us consider the initial equilibrium state
sA(0) andsB(0), sA(0)<sB(0), and let usapply to them the
two ordered input historieshA(t)<hB(t). Then, at any sub-
sequent timet.0, sA(t)<sB(t).

Proof. Let us consider the evolution of the two stat
sA(t) and sB(t) first from t50 up to the time of the first
reversal ofhA(t) or hB(t), then from this time to the time o
the second reversal ofhA(t) or hB(t), and so on. By consid
ering that initiallysA(0)<sB(0) and by applying theorem 3
we find that order is preserved in the first interval and t
the states at the end of the interval are still ordered. T
permits one to conclude that order is preserved also in
second interval, and so on.

APPENDIX C: SOLUTION OF LEVEL-CROSSING
PROBLEM

The probability current associated with Eq.~31! is

J~h,xuh0!5A~h!P~h,xuh0!2
1

2

]

]h
@B2~h!P~h,xuh0!#.

~C1!

The rate at which the process leaves the interval@b,a# start-
ing from h5h0 at x50 is obtained by integrating Eq.~31!
over h. One obtains

2
]

]x F E
b

a

P~h,xuh0!dhG5J~a,xuh0!2J~b,xuh0!.

~C2!

Equation ~C2! shows that the probability current at th
boundaries is just proportional to the probability density t
a level-crossing event takes place at the positionx. As men-
tioned before, we are interested in level crossing through
upper boundaryh5a, described by the probability curren
J(a,xuh0). According to Eq.~C1!, the functional dependenc
of J(a,xuh0) on x and h0 is the same as that ofP(a,xuh0)
5P(a,xuh0,0)5P(a,0uh0 ,2x). This means thatJ(a,xuh0)
obeys the backward equation@24#

]

]x
J~a,xuh0!2A~h0!

]

]h0
J~a,xuh0!

2 1
2 B2~h0!

]2

]h0
2 J~a,xuh0!50. ~C3!
t
is
e

t

e

The total probabilityp@b,a#(h0) that the process leave th
interval @b,a# throughh5a is given by the expression

p@b,a#~h0!5E
0

`

J~a,uuh0!du. ~C4!

By integrating Eq.~C3! from x50 to `, and by taking into
account that J(a,0uh0)5J(a,`uh0)50, one finds that
p@b,a#(h0) satisfies the differential equation

1
2 B2~h0!

d2p @b,a#

dh0
2 1A~h0!

dp@b,a#

dh0
50 ~C5!

with the boundary conditions

p@b,a#~a!51,

p@b,a#~b!50, ~C6!

deriving from the fact that the process will certainly cross t
boundaryh5a if it starts from that same level, that is, from
h0˜a, whereas it will never reachh5a if it starts from
h0˜b, because in that case it will certainly cross the boun
ary h5b first. The solution of Eq.~C5! is then

p@b,a#~h0!5
1

K @b,a#
E

b

h0
c~u!du, ~C7!

wherec(u) andK @b,a# are given by Eqs.~32! and ~34!, re-
spectively.

The probability densityp@b,a#(xuh0) that the process
reaches the boundaryh5a at the positionx is given by

p@b,a#~xuh0!5
J~a,xuh0!

p@b,a#~h0!
~C8!

and the mean valuex@b,a#(h0) of the level-crossing position
is

x@b,a#~h0!5E
0

`

up@b,a#~uuh0!du

5
1

p@b,a#~h0!
E

0

`

uJ~a,uuh0!du. ~C9!

By definition, the conditional probability densityT(a,xub,0)
of Eq. ~27! is given by the limit of Eq.~C8! for h0˜b, that
is,

T~a,xub,0!5p@b,a#~xub!, ~C10!

and the functionXT(aub) defined by Eq.~27! is accordingly
given by

XT~aub!5x @b,a#~b!. ~C11!

By multiplying Eq.~C3! by x, by integrating it fromx50 to
`, by taking into account thatJ(a,0uh0)5J(a,`uh0)50,
and by making use of Eq.~C4!, one finds that the function

f @b,a#~h0!5p@b,a#~h0!x @b,a#~h0! ~C12!

obeys the differential equation
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1
2 B2~h0!

d2f @b,a#

dh0
2 1A~h0!

d f @b,a#

dh0

1p@b,a#~h0!50

~C13!

with the boundary conditions

f @b,a#~a!5 f @b,a#~b!50 ~C14!

deriving from the fact thatx@b,a#(a)50 by definition,
whereasp@b,a#(b)50 because of Eq.~C6!. Equation~C13! is
a linear, nonhomogeneous first-order differential equation
d f @b,a# /dh0 . The solution reads

d f @b,a#

dh0

5c~h0!FC22E
b

h0 p@b,a#~u!

B2~u!c~u!
duG , ~C15!

where p@b,a#(u) and c(u) are given by Eq.~C7! and Eq.
~32!, respectively. The constant of integrationC can be ex-
pressed as

C5
1

c~b! Fd f @b,a#

dh0
G

h05b

. ~C16!

By deriving Eq. ~C12! with respect toh0 , by taking into
account that p@b,a#(b)50 and @dp@b,a#/dh0#b5c(b)/
K @b,a# , and by making use of Eq.~C11!, we obtain
-

-

s

s

r

Fd f @b,a#

dh0
G

h05b

5
c~b!

K @b,a#
x @b,a#~b!5

c~b!

K @b,a#
XT~aub!.

~C17!

Equations~C16! and~C17! permit one to write Eq.~C15! in
the form

d f @b,a#

dh0
5c~h0!FXT~aub!

K @b,a#
22E

b

h0 p@b,a#~u!

B2~u!c~u!
duG .

~C18!

By integrating Eq.~C18! from b to h0 and by inverting the
order of integration in the double integral, one obtains

f @b,a#~h0!5XT~aub!p@b,a#~h0!

2
2

K @b,a#
E

b

h0F E
b

u

c~u8!du8G
3F E

a

h0
c~u8!du8G du

B2~u!c~u!
, ~C19!

where use has been made of Eq.~C7!. Taking into account
that f @b,a#(a)50 and p@b,a#(a)51, one concludes tha
XT(aub) must be equal to Eq.~33!.
W.
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